

Solar Powered Ham Shack

Why Have a Solar Powered Ham Shack?

- 1. Emergency Communications on the air when the grid is down
- 2. No Power Supply = Less Noise
- 3. COOL factor fun project to build!

BONUS: Limited backup AC power for your home during grid outage.

Solar Powered Ham Shack

- Q: What is a Solar Powered Ham Shack?
 - A: Battery Powered Ham Shack...
 - with a Solar Battery Charger

Battery Chemistries - Lithium Ion

Umbrella term for 6 different Lithium chemistries:

- 1. Lithium Cobalt Oxide
- 2. Lithium Manganese Oxide
- 3. Lithium Nickel Manganese Cobalt Oxide
- 4. Lithium Iron Phosphate
- 5. Lithium Nickel Cobalt Aluminum Oxide
- 6. Lithium Titanate

Batteries for Solar

Battery Chemistries - Lithium Ion

Lithium Cobalt Oxide

Common in consumer electronics Highest energy density (150-200 Wh/kg) Low cycle live (500 - 1,000 cycles) Most unstable / Dangerous (YouTube videos)

Lithium Iron Phosphate

Common in solar applications Lower energy density (90-120 WH/kg) Higher cycle life (2,000 - 10,000 cycles) Most stable / Safe Lithium chemistry

*BatteryUniversity.com

Amp Hour Capacity (aka energy capacity)

100 Amp Hour battery can deliver: 100 amps for 1 hour 50 amps for 2 hours 20 amps for 5 hours 10 amps for 10 hours 1 amp for 100 hours (assuming 100% depth of discharge)

Batteries for Solar

Combining batteries for additional capacity

NEVER combine batteries that are:

Dissimilar Chemistry Dissimilar Size Dissimilar Age

Batteries for Solar

Combining batteries for additional capacity

Batteries in PARALLEL add Amp Hour Capacity i.e.: Four 12 volt 100Ah batteries = 12v 400Ah battery bank

How Much Battery Do I Need in the Shack? Icom 7100 2m FM 50 watts

Radio's receive amperage X hours listening? 1.2 amps X 8 hours = 9.6 Ah Radio's transmit amperage X hours transmitting? 5.5 amps X 2 hours = 11 Ah Battery's supported depth of discharge? 30% (lead acid battery)

How Much Battery Do I Need in the Shack? Icom 7100 2m FM 50 watts

(9.6Ah + 11Ah) / 30% DoD = 69 Ah Battery

(9.6Ah + 11Ah) / 50% DoD = 41 Ah Battery

(9.6Ah + 11Ah) / 80% DoD = 26 Ah Battery

Batteries for Solar

How Much Battery Do I Need for POTA / QRP? Icom 7100 2m FM 10 watts

Radio's receive amperage X hours listening? 1.2 amps X 4 hours = 4.8 Ah Radio's transmit amperage X hours transmitting? 3.5 amps X 2 hours = 7.0 Ah Battery's supported depth of discharge? 80% (Lithium battery)

Batteries for Solar

How Much Battery Do I Need for POTA / QRP?

(4.8Ah + 7.0Ah) / 80% = 15Ah Lithium Battery

Solar Powered Ham Shack

Anatomy of a Solar Powered Ham Shack?

Solar Panel(s)

Solar Photovoltaic Panels

Polycrystalline Panels:

- Less efficient / lower power output (historically)
- Less expensive (historically)

Monocrystalline Panels:

- More pure silicon-additional refining
- More efficient (historically)
- More expensive (historically)

Bottom Line:

- Practically identical today
- Price / Watt (\$0.50-\$0.90/ watt +/-)
- Availability?
- Great for permanent install

Solar Photovoltaic Panels

Anamorphous Thin Film Panels:

- Rugged & Durable
- Flexible
- Expensive (\$1.00 \$2.00+ / watt)
- Inefficient (80% of mono/poly)Great for mobile / portable applications

Solar Photovoltaic Panels

Solar Panel Specifications

100W Polycrystalline	Photovoltaic Solar Panel	ELECTRICAL DATA STC*					
Part #:	SOL-100P-01	CS3K	315MS	320MS	325MS	330MS	
Maximum Dawar (Descub	100 Watts 21.60 Volts 6.32 Amps	Nominal Max. Power (Pmax)	315 W	320 W	325 W	330 W	
Open Circuit Voltage (Voc		Opt. Operating Voltage (Vmp)	33.1 V	33.3 V	33.5 V	33.7 V	
Short Circuit Current (Isc):		Opt. Operating Current (Imp)	9.52 A	9.61 A	9.71 A	9.80 A	
Max Power Voltage (Vpm) Max Power Current (Imn):	5 75 Amos	Open Circuit Voltage (Voc)	39.9 V	40.1 V	40.3 V	40.5 V	
Max System Voltage:	000 VDC (600 VDC UL)	Short Circuit Current (Isc)	10.06 A	10.14 A	10.22 A	10.30 A	
Dimensions:	40.0" x 26.4" x 1.2"	Module Efficiency	18.96%	19.26%	19.56%	19.86%	
[1015mm x	[1015mm x 670mm x 30mm]	Operating Temperature	-40°C ~ +85°C				
Weight:	17.6 lbs [8kg]	Max. System Voltage	1500V (IEC/UL) or 1000V (IEC/UL)				
Max Series Fusie Raing, 6 Anjpa Nom Operating CET Term: 450 (1-21)		Module Fire Performance	TYPE 1 (UL 1703) or				
			CLASS C (IEC 61730)				
		Max. Series Fuse Rating	30 A				
		Application Classification	Class A				
		Power Tolerance	0~+5W				

Solar Photovoltaic Panels

Solar Panel Performance

Standard Test Conditions (STC) Panel Temperate = 25°C Irradiance = 1,000 watts / square meter

Solar Photovoltaic Panels

Solar Panel Performance

Temperature impacts panel voltage: 1% voltage increase for every 3°C temp decrease

 $30^{\circ}C$ temp decrease from STC (-5°C) = 10% voltage increase $30^{\circ}C$ temp increase from STC (55°C) = 10% voltage decrease

Irradiance impacts panel amperage: 1,000 watts / square meter = 100% of rated amperage

> 800 watts / square meter = 80% of rated amperage 1,200 watts / square meter = 120% of rated amperage

Solar Photovoltaic Panels

Panel Orientation

Azimuth:

- South in northern hemisphere
- North in southern hemisphere

Elevation:

- Latitude = best year round production
- Latitude+15° = best winter production
- Latitude-15° = best summer production

Shading:

Can reduce production 80% +/-

Solar Charge Controllers

Pulse Width Modulation (PWM)

- Original / older charge controller technology
- Inexpensive (\$40 \$150 range)
- Directly connects solar array to battery
- Uses pulse width modulation to taper charge current in absorb and float stages.
- Array voltage is pulled down to battery voltage very inefficient
- * i.e.: 35 volt 10 amp (350 watt) solar panel will only produce 12 volts & 10 amps (120 watts) into the battery (35% efficient)
- i.e.: 18 volt 5.5 amp (100 watt) solar panel will only produce 12 volts & 5.5 amps (66 watts) into the battery (66% efficient).

Solar Charge Controllers

Maximum Power Point Tracking (MPPT)

- Newer charge controller technology
- Expensive (\$100 \$1,500)
- Intelligently find the maximum power point of the solar panels I-V curve to maximize solar production.
- 95% 98% efficient, so a 350 watt panel will produce 330 watts into the battery.
 Supports solar voltage from

Design Goals

Estimate electrical loads (Ah)

Size battery to meet / exceed loads

2x - 3x the energy needed for a lead acid battery 200-300Ah lead acid battery = 100Ah usable capacity

125 Ah Lithium battery for 100Ah usable capacity

Size solar array to recharge battery in 1 sunny day Solar should be 1/3 the battery's usable watt hour capacity 100 watt array for a 300 usable watt hour battery

